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The connection between the aromaticity of annulenes and annulene ions with 
4u + 2 ~--electrons and the stability of  the closed-shell restricted Har t ree-Fock 
(RHF) solutions for these systems is discussed in the framework of the 
PPP-approximation.  It is shown that the tendency towards an uniform electron 
density distribution in aromatic cycles is paralleled by the stability properties 
of  the corresponding closed-shell R H F  solutions. The stability investigations 
are demonstrated to provide realistic estimates of  the critical ring sizes at 
which Hiickel's 4 v + 2  rule breaks down. 
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1. Introduct ion 

Hiickel's classical 4 v + 2 rule [ 1 ] has given the impetus for a number of  theoretical 
and synthetic investigations aimed at a clarification of the phenomenon of 
aromaticity. The annulenes provide the oldest and most frequently discussed 
model in this respect, attracting much interest both from the theoretical as well 
as from the synthetic point of  view. The attention of a number  of  authors [2-10] 
has been focused on two basic problems: (i) the search for a theoretical criterion 
allowing to predict the aromatic  character of  annulenes with 4v + 2 or-electrons, 
respectively, the antiaromatic character of  annulenes with 4v w-electrons and (ii) 
to test whether there exists a critical ring size limiting the validity of  Hfickel's 



26 P. Karadakov and O. Castafio 

rule. As is well known (see, e.g. [11] and references therein), aromatic compounds 
exhibit (i) a decrease in the alternation of "single" and "double"  bonds and (ii) 
a tendency towards an uniform electron density distribution on atoms and bonds 
[an obvious example for (i) and (ii) is benzene]. 

According to Longuet-Higgins and Salem [2], Hfickel's 4 v + 2  rule breaks for 
the [18]-annulene which is indicated by the fact that at this ring size the structure 
with alternating bond-lengths, i.e., "single" and "double"  bonds, becomes lower 
in energy than the corresponding structure with equal bondlengths. Later PPP- 
studies of  Dewar and Gleicher [3] have shown that the critical ring size for the 
appearance of  bond alternation is between the [22] and [26]-annulene. This result 
has also been confirmed by NMR investigations [10]. The limiting ring sizes 
indicated by other authors [6, 8, 9] in principle closely approach either the value 
given by Longuet-Higgins and Salem, or the value given by Dewar and Gleicher. 

The [4u+2]-annulenes  have been chosen by (~i~ek and Paldus [12-14] as a 
convenient ~--electronic model in their studies of the stability of closed-shell 
restricted Hartree-Fock (RHF) solutions. Their PPP-investigations reveal several 
interesting phenomena: (i) When using the Mataga-Nishimoto parametrization 
[15], the closed-shell RHF solutions for annulenes with up to 26 atoms are singlet 
stable. The closed-shell RHF solution for the [26]-annulene is singlet unstable 
and in addition to this solution one can find another closed-shell HF solution 
with lower energy and broken spatial symmetry - the so-called off-diagonal 
charge-density wave (CDW) [or, bond-order alternation wave (BAW)] solution. 
A characteristic feature of  this broken-symmetry solution is the alternation of 
bond-orders between starred and non-starred atoms (the even annulenes are 
alternant systems); (ii) when using the Pariser-Parr [16], or the theoretical [17] 
parametrization, the ring size for which one observes the effects described in (i) 
is shifted to the [18]-annulene. Obviously, there exists a very good agreement 
between the ring sizes limiting the validity of  Hiickel's 4 v +  2 rule and the ring 
sizes at which the closed-shell RHF solutions for [4v+2]-annulenes  become 
singlet unstable, and there appear new solutions of the BAW type. The analysis 
of  the ~--electronic model of the allyl radical in the framework of  the PPP- 
approximation performed by Paldus and Veillard [18] has demonstrated that the 
existence of a broken symmetry solution with different bond-orders for the 
equidistant structure implies an energy lowering upon a distortion of the nuclear 
framework in accordance with the bond-order magnitudes. Similar results for 
model infinite systems with nearest-neighbor Coulomb interactions have been 
obtained by Kondo [19] and by Fukutome and Sasai [20]. It has been observed 
for a number of finite and infinite systems [18-24] that the relaxation of the 
nuclear framework according to the bond-order distribution for a BAW solution 
leads to an additional decrease of the total energy. Kert6sz et al. [25] have argued 
that the nonuniform electron density distribution between atoms leads to the 
appearance of nonzero Hel lman-Feynman forces pulling the nuclei together in 
the high-density region. Thus, it appears that there exists a close relationship 
between BAW solutions and bond alternation. In the case of annulenes this 
relationship is further confirmed by the fact that the geometry of  the antiaromatic 
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cy~lobutadiene optimized in the framework of the PPP-method exhibits alternat- 
ing bond-lengths (see the recent review [26] and the references therein), while 
the authors of [27] have found for the square geometry a PPP-solution with 
alternating bond-orders. 

For large cycles Paldus and t~ff~ek have found [14] an additional closed-shell 
HF solution with broken spatial symmetry-  the so-called diagonal CDW's (or, 
simply, CDW's) which are characterized by alternating atomic charges. 

It should be mentioned that as both BAW and CDW solutions exhibit nonuniform 
electron density distributions, the related values of the information index of 
aromaticity [11] based on the charge-density and bond-order matrix should be 
low and corresponding to nonaromatic character. One could also make another 
supposition of a more speculative character, that the absence of solutions with 
nonuniform electron distribution for [4 v + 2J-rings of moderate size is related to 
their lower reactivity which is usually attributed to aromatic stabilization. In this 
respect one should also study the nonsinglet (or, triplet) stability of the pertinent 
closed-shell RHF solutions which is connected with the possible existence of 
spin-unrestricted HF (spin-UHF) solutions, the importance of which for the 
explanation of the mechanisms of radical reactions has been emphasized by 
Fukutome et al. (see [28] and Refs. therein). The considerations adduced above 
show that there should exist a connection between the aromaticity of 
[4v + 2]-annulenes and the stability of the pertinent closed-shell RHF solutions. 
In this article we present PPP-investigations of the stability of the closed-shell 
RHF solutions for cycles with 4v + 2 electrons, which, according to HiJckel's rule, 
should be aromatic at least for moderate ring sizes. Calculations have been carded 
out not only for the [4v + 2]-annulenes, but also for several charged systems with 
4 v + 2 electrons - tlie [ 4 v + 1 ]--annulene aniones, the [4 v + 3 ] § annulene cations, 
the [4v]2--annulene dianions and the [4(v + 1)]2+-annulene dications. By these 
investigations we trace the possible relationship between the stability of the 
closed-shell RHF solutions for cycles with 4v + 2 electrons and their aromaticity. 

2. Theory 

The formalism developed by Paldus and Creek in their investigations of the 
stability of the closed-shell RHF solutions for [4u+2]-annulenes [12-14] can 
straightforwardly be adapted to the cases of different closed-shell annulene ions. 

It is well known that the high spatial symmetry of an N-atomic cycle with equal 
bondlengths (point group DNh) completely determines the form of the pertinent 
RHF orbitals. Each one of these orbitals belongs to a definite one-dimensional 
irreducible representation of the subgroup CN of the point group DNh and may 
~onveniently be labelled [12-14] by its quasimomentum j ( j  = O, 1, 2 , . . . ,  N -  1). 

�9 symmetry factorization of the closed-shell stability problems in the case of 
"l-annulenes has been described in detail in [14]. A similar factorization 

for each one of the charged cyclic systems with 4 v + 2  electrons 
oresent article. It is due to the fact that the only nonzero elements 
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of the matrices A x, B x (x = s, ns) participating in the singlet and nonsinglet 
stability problems (for definitions, see, e.g. [12]) are: 

ASkp~kp+p, lp._..lp+p : AS_kpo_kp_p,_lp~_l.o_p 

= A(kp)~k#,, + 2K(p )  - K(kp - lp), (la) 

BSkv~k.v+p,_ir,~_lv_p : BS__kp_,,_kp_p, lp~lp+p 

= 2 K ( p )  - K(k,  + Ip +p), (lb) 

A,,S _ A,,S kp kp+p, lp'->lp+p-- -kp--->-kp-p,-lp~-lp-p 

= A(kp) 8k,,,, - K(k,  - lp) (2a) 

S'k~-,k~+p.-,p-,t,-p = B~k-~-k,-p&-~,~+ p 

= -K(k~+l~+p)  (2b) 

where p = 1, 2 . . . .  , n for even values of N ( N  = 2n) as well as for odd values of 
N ( N  = 2n + 1). In the above equations and further in the text all indices labelling 
orbitals should be taken modulo N. The indices kp, lp belong to the set Gp: 

Gp=--{u-p+l, v - p + 2 , . . . ,  u}, (3a) 

and the indices -kp, -lp - to the set GN_p: 

GN_p = { - u + p -  1, - u + p  - 2  . . . .  , -u}.  (3b) 

The sets Gp, GN-p represent subsets of the set G comprised of the indices of 
the occupied RHF orbitals: 

G - = { - u , - u + l , . . . ,  u}. (4) 

There are two exceptions from the definitions (3), namely in the case of  [4~'] 2-- 
annulene dianions 

GN/2 ~ Gn-~ G2~--- { - u +  1, - u + 2 , . . . ,  u - l } ,  (5a) 

and in the case of [4(v + 1)]2+-annulene dications: 

GN/:-  O,, =- G2~+a- G (5b) 

It may easily be shown that the quasimomentum transfer [12] corresponding to 
the orbital monoexcitation kp ~ kp+p is equal to p, while the quasimomentum 
transfer corresponding to the orbital monoexcitation -kp ~ - k p - p  is equal to 
N - p .  

The quantity K(j)  is given by: 

(i) for even values of N ( N = 2 n )  [14]: 

[ ,] K(j)  = N - '  Too+(-1)JTo.+2  2 To. cos (27rjlz/g ; (6a) 
~ = 1  

(ii) for odd values of N ( N = 2 n + I ) :  

K( j )=N-I[Too+2 ~ T o .  COS(2"rrjtz/N)]. (6b) 
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Here y.~ denotes the Coulomb repulsion integral between the atomic orbitals 
and u. 

The quantity A(kp) stands for the difference between the orbital energies [14] of 
the orbitals with quasimomenta k v +p  and kp: 

A(kv) - 2fl{cos [27r (kp + p ) / N ]  - cos (2~'kv/N)} 

- • [ K ( k v + p - l ) - K ( k p - l ) ] ,  (7) 
l e g  

where/3 represents the resonance integral between neighboring atomic orbitals. 

For the sake of convenience, further in this article we shall denote the orbital 
monoexcitations labelling nonzero elements of the matrices A x, B x only by the 
indices of the corresponding occupied orbitals, i.e. the orbital monexcitation 
kp ~ kp + p  will be denoted simply by kv, and the orbital monoexcitation - k  v 
- k p - p -  by - k  v. Bearing this convention in mind, the subproblems resulting 
from the symmetry factorization of the singlet and nonsinglet stability problems 
may be represented as [note that the pair of Eqs. (8a) and (8b) defines one 
eigenvalue/eigenvector problem]: 

[a~#pe,[ff +(_l)YB~p,_t e~y]= x , y  x , y  rip ekp, (8a) 

E [(-1)YB~-k~d~e~'ff +Ax ~,y~ x,r *,y .~-k.,-t~e-tpj = rip e_k. (8b) 

( x =  s, ns; y=O,  1; kp~ G,) .  

In Eqs. (8) p =  1 , 2 , . . . ,  n - 1  for even values of N ( N = 2 n )  and p =  1, 2 , . . . ,  n 
for odd values of N ( N = 2 n +  1). For even values of N there appears also a 
p = n subproblem, the so-called maximum quasimomentum transfer subproblem 
[14]. This subproblem may be represented by either one of Eqs. (8a), (8b), or, 
alternatively, as (see also [14]): 

y x x , y  ~, [A~,/n+(_l  ) nkn, ln]eln x y  x,  y =ri2  ~k~ (9) 
I n C G n  

( x = s ,  n s ; y = O ,  1; k ~  G~). 

There exist unitary transformations which allow the further factorization of the 
eigenvalue/eigenvector problems (8) (p ~ n for even values of N): 

+ ~ x , y  - -  , ' ~ - - l / 2 [  ~ x , y  .3- ~ x , y  "~ 
~ k p  - -  1.. 'k lCkp - -  ~ - - k p ] ,  (10a) 

x , y  -~x,Y~kp --~-- .~-l/2r ~.yt~k~ -- e-k.) .  (10b) 

As a result, one obtains subproblems of a twice lower dimension: 

[ Ak~,l. y x + x , y  + x , y +  x , y  + ( - 1 )  Bk.,_~] % = rip ek . ,  (11) 

x y x -- x , y  - -  -- x , y - -  x , y  
[Aged.--(--1) Bk.,-~.] e~. -- ~p ek~ �9 (12) 

For the sake of convenience, further in the text we shall refer to Eq. (11) as to 
the (p, x, y, +) stability subproblem, and to Eq. (12) - as to the (p, x, y, - )  stability 
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subproblem. It may be easily established with the help of Eqs. (1), (2), (11), (12) 
that the matrices of some of the subproblems (11), (12) are identical. Such are 
the matrices of the (p, s, 0, +) and (p, s, 1, - )  subproblems, as well as the matrices 
of the (p, ns, 0, +) and (p, ns, 1, - )  subproblems. The matrices of the (p, s, 0, - ) ,  
(p, s, 1, +), (p, ns, O, - ) ,  (p, ns, 1, +) subproblems are also identical. 

The p = n subproblems (9) appearing for even values of N may also be subjected 
to further factorization by means of the unitary transformation proposed in [ 14]: 

+ x,y x.y (13a) e o .  = e o ~  , 

x . y  +e~ 'y = 2-1/2(e~ y + e-k,.) (13b) 

- e ~  r = 2-1/2(e~ - e~n). (13c) 

In Eqs. (13b), (13c) k , e  G~ >, where G ,  > is a subset of G,. In the case of 
[4 v + 2]- annulenes 

> _ _  > _ _  ' ' ' ,  G,  = G2~+~ = {1, 2, v}, (14a) 

in the case of [4v]2--annulene dianions 

G > _ -  > _ . ,  G2~={1,2 , . .  v - l } ,  (14b) 

and in the case of [4(v + 1)]2+-annulene dications 

G > _ _ -  > _ . ,  G2~+2={1,2,..  v}. (14c) 

The (n, x, y, +) subproblem arising from a p = n subproblem may be represented 
as [the subscripts n have been omitted from Eqs. (15), (16) for the sake of 
convenience]: 

[A'oo+(-1)YB'~o]+ e~ "y + 2'/2 Z [ A ' ~ , + ( - 1 F B g , 1 +  e'? y + ~'~+ x , y  = n e0 (15a) 
l e g  > 

21/2[A~o + ( -  1)YB~o]+e~ "y 

x .~_ x .~_ y x x + x y  + x , y +  x , y  + E [Akt Ak_, ( -1 ) (Bk ,+Bk, - t ) ]  e f  = ~7 ~k �9 (15b) 
l e g  > 

There arises also a (n, x, y, - )  subproblem: 

x x .31_ y x x - -  x , y  - -  - -  ~, [ A k l - - A k - i  (--1)(Bki--Bk,-l)] el = rff "y e~ 'y (16) 
l e g  > 

The analysis of Eqs. (15), (16) shows that the matrices of the (n, ns, 1, +) and 
(n, s, 1, +) subproblems are identical. The same holds for the matrices of the 
(n, ns, 0, - )  and (n, s, 0, - )  subproblems and for the matrices of the (n, ns, 1, - )  
and (n, s, 1, - )  subproblems. 

3. Numerical results and discussion 

At the beginning of this section we provide a brief description of the parameteriz- 
ation scheme employed in the present stability investigations. It has been assumed 
that the value of the resonance integral /3 is -2.388 eV, while the Coulomb 
repulsion integrals have been calculated using the Mataga-Nishimoto formula 
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Table 1. Lowest eigenvalues of the singlet stability problem for cyclic systems with 4 v  + 2 electrons 
(see text for explanations) 

v [4v+2 ]  [4v+  1]- [4v+3]  + [4v] 2- [ 4 ( v + l ) ]  2+ 

0 - -  - -  7 .164"  - -  4.776* 

1 4 .179 5.340* 4 .041"  4.776* 3 .377"  

2 1.943 3.111 2.329 3 .377"  2.087 

3 0 .950 1.778 1.371 2.087 1.267 

4 0.395 1.058 0.810 1.267 0.767 

5 0.043 0 .610 0 .444 0.767 0 .432 

6 - 0 . 1 9 8  0.305 0.187 0.432 0.193 

7 - 0 . 3 7 3  0.085 - 0 . 0 0 3  0.193 0.015 

8 - 0 . 5 0 5  - 0 . 0 8 1  - 0 . 1 4 9  0.015 - 0 . 1 2 3  

9 - 0 . 6 0 7  - 0 . 2 1 0  - 0 . 2 6 4  - 0 . 1 2 3  - 0 . 2 3 2  

10 - 0 . 6 8 9  - 0 . 3 1 3  - 0 . 3 5 7  - 0 . 2 3 2  - 0 . 3 2 1  

[15]; 30o = 10.84 eV. The distance between neighboring atoms has been assumed 
to be equal to 1.40 A. 

We have performed investigations of the stability of the closed-shell RHF sol- 
utions for [4v+2]-annulenes, [4v+l] - -annulene anions, [4v+3]+-annulene 
cations, [4v]2--annulene dianons and [4(v+l)]2+-annulene dications with v 
taking integer values from 0 to 10. The obtained lowest eigenvalues of the singlet 
and nonsinglet stability problems are given in Tables 1 and 2. 

The eigenvalues adduced in Table 1 (except those marked by an asterisk) originate 
from the following subproblems: for the [4v+2]-annulenes-  from 
the (n,s, 1 , - )  subproblems; for the [4v+l]--annulene anions and for the 
[4v + 3]+-annulene cations - from the (n, s, O, +)/(n,  s, 1, - )  subproblems; for the 
[4v]2--annulene dianions and for the [4(v + 1)]2+-annulene dications from the 
(n, s, 0, +) subproblems. The eigenvalues marked by an asterisk originate from 
the (1, s, 0 , - ) / ( 1 ,  s, 1,-)-subproblems. The eigenvalues form Table 2 (except 

Table 2. Lowest eigenvalues of the nonsinglet stability problem for cyclic systems with 4 v  + 2 electrons 
see text for explanations) 

v [ 4 v + 2 ]  [ 4 v +  1 ] -  [ 4 v + 3 ]  + [4v ]  ~- [ 4 ( v +  1)] 2+ 

0 - -  - -  3.456* - -  1 .532" 

1 - 0 . 2 0 1  1.753 0.624 1.532" 0.289 

2 - 1 . 4 7 5  - 0 . 1 0 2  - 0 . 5 9 8  0.289 - 0 . 6 0 6  

3 - 2 . 0 4 9  - 0 . 9 5 6  - 1.226 - 0 . 6 0 6  - 1.126 

4 - 2 . 3 6 9  - 1 . 4 3 6  - 1 . 6 0 4  - 1 . 1 2 6  - 1 . 4 5 9  

5 - 2 . 5 6 8  - 1 . 7 4 2  - 1 . 8 5 6  - 1 . 4 5 9  - 1 . 6 8 8  

6 - 2 . 7 0 3  - 1.954 - 2 . 0 3 7  - 1.688 - 1.856 

7 - 2 . 8 0 0  - 2 . 1 1 0  - 2 . 1 7 3  - 1 . 8 5 6  - 1 . 9 8 5  

8 - 2 . 8 7 1  - 2 . 2 3 0  - 2 . 2 8 0  - 1 . 9 8 5  - 2 . 0 8 7  

9 - 2 . 9 2 6  - 2 . 3 2 5  - 2 . 3 6 5  - 2 . 0 8 7  - 2 . 1 7 0  

10 - 2 . 9 6 9  - 2 . 4 0 2  - 2 . 4 3 6  - 2 . 1 7 0  - 2 . 2 3 9  
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those marked by an asterisk appear in the following subproblems: for the 
[41, + 2]-annulenes in the (n, ns, 0, +) subproblems; for the [4v + 1]--annulene 
anions and for the [4v+3]+-annulene cations - in the (n, ns, O, +)/(n,  ns, 1, - ) -  
subproblems; for the [4v]2--annulene dianions and for the [4(v + 1)]2+-annulene 
dications - in the (n, ns, O, +)-subproblems. The eigenvalues marked by an asterisk 
appear in the (1, ns, O, +)/(1, ns, 1, - )  subproblems. 

The results about the singlet stability of the investigated cyclic systems exhibit 
several interesting properties. The transitions between singlet stable and singlet 
unstable closed-shell RHF solutions take place between the [22] and [26]- 
annulenes, between the [29]- and [33]--annulene anions, between the [27] + and 
[31]+-annulene cations, between the [32] 2+, [32] 2- and [36] 2+, [3612--annulene 
dications and dianions. These values are in very good agreement with the common 
concept about the limiting ring sizes at which Hiickel's rule breaks (see also 
Introduction). It has been shown by Ci~ek and Paldus [12-14] that the singlet 
instability of the closed-shell RHF solution for [4v+2]-annulenes originating 
from the (n, s, 1, - )  stability subproblem is connected with the existence of an 
energetically advantageous off-diagonal CDW (or, BAW) solution. For larger 
cycles, Paldus and Cf~.ek have found [ 14] also a diagonal CDW solution associated 
with a singlet instability originating from the (n, s, 0, +) stability subproblem. In 
the case of the Mataga-Nishimoto parametrization scheme this instability is 
encountered first for the [54]-annulene. Thus, for [4z, + 2]-annulenes the singlet 
instability towards an off-diagonal CDW solution is encountered before the singlet 
instability towards a diagonal CDW solution. On the contrary, our results show 
that for the [4v]2--annulene dianions and for the [4(v + 1)]2+-annulene dications 
the first singlet instability to be encountered upon increase of the ring size 
originates from the (n, s, 0, +) subproblem. It may be easily demonstrated that 
the spatial symmetry breaking connected with this instability is of the diagonal 
CDW type. The analysis of the spatial symmetry breaking associated with the 
singlet instabilities in cycles with an odd number of atoms shows that it is 
connected with the existence of closed-shell Slater determinants belonging to the 
point group D2h which correspond to lower energies than the pertinent RHF 
solutions. 

It is not surprising that the closed-shell RHF solutions for the majority of the 
investigated cyclic systems are nonsinglet unstable. In fact, the nonsinglet stability 
of closed-shell RHF solutions in the framework of the PPP-approximation appears 
to be a rare phenomenon, at least for the most common parametrization schemes 
(see also [29]). In this respect, it is interesting to note that for the parametrization 
scheme adopted in the present paper, the closed-shell RHF solutions for the 
systems [3] +, [4] 2+, [4] 2-, [5]-, [7] +, [8] 2+, [8] 2- are nonsinglet stable. In order 
to get additional insight into the nonsinglet stability properties of these systems, 
we have investigated the dependence of the lowest eigenvalues from the corre- 
sponding nonsinglet stability problems on the value of the resonance integral/3 
while keeping all other parameters fixed. In particular, we have analytically 
established the critical values of /3, namely, /3c~it, separating the regions of 
nonsinglet stable and nonsinglet unstable closed-shell RHF solutions for the 
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above mentioned systems plus benzene (see Table 3) 1. For/3 >/3crit the pertinent 
closed-shell RHF solutions are nonsinglet unstable, while for/3 </3crit they are 
nonsinglet stable. In fact, the increase of 1/31 leads to an increase of the relative 
weight of the sum of one-electron operators in the total ~r-electronic Hamiltonian 
of the investigated system and vice versa. It may be easily established from Eqs. 
(1), (2), (6) and (7), that for large values of 1/31 the lowest eigenvalues from the 
singlet, as well as from the nonsinglet stability problems approach the difference 
between the lowest virtual orbital energy and the highest occupied orbital energy. 
Consequently, for large values of 1/31 the closed-shell RHF solutions for the 
investigated systems should be singlet, as well as nonsinglet stable. However, the 
I/3r values from Table 3 are relatively low. They are even lower (except I/3cnt[ 
for benzene) than the values recommended by the majority of the PPP-parametriz- 
ation schemes. This fact suggests that the nonsinglet stability of the closed-shell 
RHF solutions for the systems from Table 3 (except benzene) is due not only to 
the effect of the one-electron part of the ~r-electronic Hamiltonian. On the other 
hand, the closed-shell RHF solutions for the discussed systems are also singlet 
stable (see Table 1). This notable stability of the closed-shell RHF solutions for 
[3] +, [4] 2+, [4] 2-, [5]-, [7] § [8] 2+, [8] 2- agrees very well with the expected 
aromatic character of these systems. 

It is interesting to note that the lowest eiegenvalues of the singlet and nonsinglet 
stability problems for [4v+2]-annulenes originate always from the maximum 
quasimomentum transfer subproblems (see also [12-14]). However, our results 
show that for the other investigated cyclic systems the lowest eigenvalues may 
appear also in subproblems which do not correspond to the maximum possible 
values of p (this is observed especially for systems of smaller size). 

We can conclude from the results of the present investigations that there exists 
a connection between the aromaticity of cyclic ~--electronic systems with 4v+2  
electrons and the stability of the pertinent closed-shell RHF solutions. The analysis 
of the singlet stability of the pertinent closed-shell RHF solutions provides 
estimates for the limiting ring sizes at which the investigated cyclic systems become 
nonaromatic. The transition from aromatic to nonaromatic systems upon incrase 
of the ring size is indicated by the appearance of a singlet instability of the closed 

Table 3. Critical values of 13 separating regions of nonsinglet 
stable and nonsinglet unstable closed-shell RHF solutions 
for several cyclic systems. 

System /3crit (eV) 

[31 + -1.236 
[4] 2+, [4] 2- -1.622 
[5]- -1.687 
[6] -2.479 
[7] + -2.087 
[812+,[812- -2.221 

For small cycles as those from Table 3 it is possible to determine the value of/3erit analytically. 
However, for larger cycles /3crit should be determined either by interpolation, or by means of the 
elegant procedure recently proposed by Paldus and Chin [24] 
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shel l  R H F  so lu t i ons  w h i c h  is a s s o c i a t e d  w i t h  an  e n e r g e t i c a l l y  a d v a n t a g e o u s  

t e n d e n c y  t o w a r d s  a n o n u n i f o r m  e l ec t ron  dens i t y  d i s t r ibu t ion .  T h e  n o n s i n g l e t  

s tabi l i ty  o f  t he  c lo sed - she l l  R H F  so lu t i ons  fo r  t he  sma l l e s t  cyc les  w i th  4 u +  

2or -e lec t rons  m a r k s  the  n o t a b l e  p e r f e r e n c e  fo r  a t o t a l l y  s y m m e t r i c  e l e c t r o n  dens i ty  

d i s t r i b u t i o n  in these  c lass ica l  e x a m p l e s  o f  a r o m a t i c  sys tems.  
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